This post by David Odom is part 3 of 3.

building geneticsTo the discerning eye, there are remarkable similarities between the biomed and construction fields. The medical community consistently looks for biomarkers in human DNA structure. This helps them to connect the dots between cause and effect. Even as early as the womb, they are able to know what to expect once that baby comes into the world.

Similarly, a building scientist is able to determine from the outset if a building design has the genetic predisposition for high risk simply by asking a few questions. He sees a binary decision tree. At the fork in the road, if Choice A is selected, this will be the outcome. If Choice B is taken instead, a very different result will ensue. By understanding, interpreting, and applying fundamental scientific laws, he can explain to a building owner or designer why the only way to decrease a particular risk is by modifying an earlier design factor.

Interestingly, studies have shown that high-risk buildings typically cost more than low-risk ones (usually due to their heightened complexity). So ironically, owners end up paying more money only to increase their risk of building failure. We’ve seen this to be true in the hotel industry: more five-star hotels have moisture problems than do three-star hotels.

If a building is going to fail, it usually does so within the first two years – often before it officially launches, and usually in a massive, catastrophic manner. We have seen numerous instances of buildings running into multi-million problems before they are even occupied. To use the biological analogy we referenced above, this would be similar to a miscarriage, stillbirth, or even Sudden Infant Death Syndrome. The “newborn” building is suddenly transferred from the nursery to the ICU.

In the medical field (as in construction) there is often a sea of mediocrity populated by islands of expertise. A true medical expert realizes that by conducting amniotic fluid genetic testing while the baby is still in the womb, problems can be predicted and in many cases, fixed before they even happen. This leads to a dramatic change in the outcome.

In the same way, a knowledgeable building scientist can detect what others have overlooked by analyzing a building’s genetic composition prior to its “birth”. An architect should not emulate a master chef, trying a pinch of this and a dash of that, operating under intuition rather than science. The construction industry needs a cookbook, not kitchen tradition or experience. Contractors need to know that this particular recipe calls for 1/2 tsp. of salt and 2 cups of flour. That way, if the recipe goes bad, they can determine what the bad ingredient or measurement was, or trace which two ingredients clashed.

The truth of the matter is that neither designers, building owners, nor product manufacturers can make accurate decisions in the dark. They must be educated about how one predictive factor will lead to an almost certain outcome. Architects must be enlightened that if they go back to the drawing board and alter one choice early on, everything else will be much more forgiving down the road. On the other hand, if they choose a continuous toilet exhaust system vs. a non-continuous toilet exhaust system, for example, every other choice along the way has to be perfect. There is no room for forgiveness built in. While one bad decision may lead to a moisture problem, two or three bad decisions can end up being catastrophic. In essence, the charts above are an architect’s or building owner’s “Get Out of Jail Free” card.

Author J. David Odom is a Vice President and Senior Building Forensics Consultant with Liberty Building Forensics Group. He has managed some of the largest and most complex mold and moisture problems in the country, including the $60M construction defect claim at the Hilton Hawaiian Village in Honolulu and the $20M claim at the Martin County courthouse. He has also managed over 500 projects for the Walt Disney Corporation dating back to 1982 that have included technical issues related to corrosion, moisture, and design & construction defect-related problems. He has published numerous manuals and technical articles, including a monograph on moisture and mold for the National Council of Architectural Registration Boards (NCARB). For more information, contact J. David Odom at